Function:
exp(x):
e^x
Commands:
who:
show all variableswhos:
who + types +valuesclc:
clear command windowclear:
clear parameter tableformat [parameter]
(parameter = short, long, shortE, longE, rational(rat))
Row vector
>> a = [1 2 3 4]
Column vector
>> b = [1; 2; 3; 4]
Matrix:
>> c = [1 2 3; 4 5 6; 7 8 9]
Colon Operator
A = [1 2 3 ... 100]
j:k
=> [j, j+1, j+2, ..., j+m], j+m<=k
j:i:k
=> [j, j+i, j+2i, ..., j+m*i], j+m*i<=k
A(i,:) = []
clear the i-th row of A
arithmetic
point multiplication
:.*
A = [a b; c d] B = [h i; j k]
A .* B = [a*h b*i; c*j d*k]
a
an integer, a + A
refers to the arithmetic that
each element of A
plus a
.
The ^
.^
/
-
follow the similar rule.
build some special matrixes
linspace(begin, end(, step(default value 1)))
eye(n):
yields an n*n identity matrix.zeros(n1,n2):
yields a n1*n2 zero matrix.ones(n1,n2):
resembles zeros(). uses 1 instead.diag([row_vector]):
yields a diagnol matrix.rand():
uniformly distributed random numbers.
Matrix functions
max(A):
yields an row vector including the
maximum num of each column ofA
.max(max(A)):
yields the maximum num ofA
.min()
sum()
mean()
resemblesmax()
in terms of rules.sort():
sort elements of each columns by ascending order.sortrows():
sort rows with their first element by ascending order.size():
yields two numbers representing the dimensional parameter.length():
yields the multiplication of the two return value of size().find():
e.g.A = [1 2 3; 4 5 6; 7 8 9]
, thenfind(4) = 2
,find(8) = 6
.